Trong hóa học Quá trình thu nhiệt

Do các liên kết bị phá vỡ và tạo ra trong các quá trình khác nhau (thay đổi trạng thái, phản ứng hóa học), thường có sự thay đổi năng lượng. Nếu năng lượng của các liên kết được tạo ra lớn hơn năng lượng của các liên kết bị phá vỡ thì năng lượng được giải phóng ra, được gọi là phản ứng tỏa nhiệt. Tuy nhiên nếu nhiều năng lượng cần thiết để phá vỡ các liên kết hơn là năng lượng được tỏa ra, thì khi đó có sự thu vào năng lượng. Do đó, nó là một phản ứng thu nhiệt.[3]

Một quá trình có tự phát hay không không chỉ phụ thuộc vào sự thay đổi entanpi mà còn vào sự thay đổi entropy (∆S) và nhiệt độ tuyệt đối T. Nếu một quá trình là quá trình tự phát ở một nhiệt độ nhất định, các chất sản phẩm cần phải có có năng lượng tự do Gibbs G = H - TS thấp hơn các chất ban đầu (một quá trình xuất công),[1] mặc dù entanpi của các chất sau phản ứng có thể cao hơn. Do đó, một quá trình thu nhiệt tự phát thường cần một sự tăng entropy được ưu tiên trong hệ để vượt qua được sự tăng entanpi không được ưu tiên sao cho vẫn có ∆G < 0. Trong khi các sự chuyển pha thu nhiệt sang các trạng thái kém trật tự hơn với entropy cao hơn, chẳng hạn sự nóng chảy và hóa hơi là thường thấy, các quá trình hóa học tự phát ở nhiệt độ bình thường hiếm khi là thu nhiệt. Sự tăng entanpi ∆H >> 0 trong một quá trình thu nhiệt mạnh mẽ trong lý thuyết thường dẫn đến ∆G = ∆H -T∆S > 0, có nghĩa là quá trình sẽ không xảy ra trừ khi năng lượng điện hay photon được cung cấp. Một ví dụ về quá trình thu nhiệt và xuất công là phản ứng quang hợp:

C6H12O6 + 6 H2O → 12 H2 + 6 CO2, ∆rH° = +627 kJ/mol, ∆rG° = -31 kJ/mol